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A B ST R A CT 

As a member of the thioredoxin (Trx) system, the Trx1 gene plays essential roles in the pathogenesis of various diseases. The function of Trx in 
bacterial infections in the freshwater crayfish Cherax quadricarinatus (Von Martens, 1868), however, has not been clarified. We cloned thiore-
doxin 1 (CqTrx1) from C. quadrangularis, and its expression was investigated. The results showed that the coding sequence of the CqTrx1 gene 
was 318 bp, encoding a polypeptide of 105 amino acids, contains the conserved motif CGPC (Cys-Gly-Pro-Cys), and was 75.24% and 66.67% 
identical to sequences of the shrimps Macrobrachium rosenbergii (De Man, 1879) and Fenneropenaeus chinensis (Osbeck, 1765), respectively. The 
CqTrx1 transcript existed in all organs tested, with the highest expression level in the intestinal tract and the lowest expression level in the gonads. 
Under the stress of Vibrio algolyticus, V. parahaemolyticus, or Aeromonas hydrophila, the expression level of CqTrx in the gills was 3.1, 4, and 7 times 
that in the control group at 3, 9, and 24 h, respectively, indicating that CqTrx1 plays an essential role in shrimp antibacterial immunity.
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I N T RO D U CT I O N
As a disulphide reductase, the thioredoxin (Trx) system plays 
a significant effect in the regulation of the redox state (Zuo et 
al., 2019). Genes of this system, including thioredoxin, thiore-
doxin reductase (Trxr), Nadph oxidase, and cytoplasm pro-
teins, are present in most organisms (Zuo et al., 2019). Three 
forms of thioredoxin have been characterized (Cunningham et 
al., 2015; Koháryová et al., 2015) and all have a Cys-Gly-Pro-
Cys-active motif, which is essential for its function as a general 
protein disulphide oxido-reductase (Léveillard et al., 2017). 
The best-investigated isomer is cytosolic Trx1, which is 12 kDa 
and mainly exists in the cytosol. Under oxidation stress, thiore-
doxin1 can be secreted to the extracellular matrix or migrate to 
the nucleus (Li et al., 2017). Another isoform, mitochondrial 
thioredoxin2, has a unique peptide at its N-terminal that makes 
a difference between it with thioredoxin1, and facilitates trans-
fer trx2 into the mitochondria (Wei et al., 2021). The third iso-
topic form Trx3 (SpTrx) plays a role in spermatozoa (Kim et al., 
2015).

Additional recent experimental evidence suggests that the 
Trx gene plays important function in multiple diseases and cel-
lular homeostasis. They have been found to be involved in redox 
signaling and presented in a range of organisms from bacteria to 
higher eukaryotes. Not only do they provide antioxidant capac-
ity, but they are also involved in various biological events in bac-
teria, such as DNA synthesis and protein folding (Liyanage et 
al., 2022). They have been found to be effective in inhibiting the 
growth of GSH-deficient bacteria (Ren et al., 2020). It was found 
that viral hemorrhagic septicemia virus and pathogen-associated 
molecular pattern molecules were observed in blood cells and 
gill tissues of the wrinkled disc abalone under bacterial stress 
(Liyanage et al., 2022). To date, Trxs from Eriocheir sinensis H. 
Milne Edwards, 1853 and Portunus trituberculatus (Miers, 1876) 
have been cloned and their expression under pathogenic attack 
were analyzed (Song et al., 2012).

Vibrio is a group of common foodborne pathogen (Li et al., 
2019) that is ubiquitously present in freshwater, estuarine, and 
marine environments, mainly in fish, shrimp, shellfish, and other 
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products. These gram-negative, rod-shaped bacteria are natural 
constituents of the environment (Baker-Austin et al., 2017). 
Vibrio alginolyticus is involved in attacking the host with a toxic 
substance (Huang et al., 2019) and is a conditional pathogen of 
shrimps (Huang et al., 2015). Previous results showed that the 
phagocytosis rate was decreased, causing acute hepatopancreatic 
necrosis and the survival rate, activity of phenol oxidase (PO), 
superoxide dismutase (SOD), and total blood count (THC) 
were significantly negatively affected by V. phagocytosis in 
Marsupenaeus japonicas (Spence Bate, 1888) (Hsieh et al., 2008; 
Ma et al., 2018; Pooljun et al., 2020).

Aeromonas hydrophila is a facultative anaerobic, gram-nega-
tive, opportunistic aquatic pathogen (Stratev et al., 2016). It is 
considered an important foodborne bacterial zoonotic pathogen 
in aquaculture. A virulent isolate phenotypically and molecu-
larly identified as a hydrophilic strain was identified as the caus-
ative agent of diseased freshwater farmed white shrimp, leading 
to major economic losses (Zhou et al., 2019a). Moreover, this 
pathogen can cause seafood-borne diarrheal disease in humans 
worldwide (Li et al., 2019). Experimental evidence showed 
that injected A. hydrophila, which is highly virulent, causes 
100% mortality of an infected freshwater crayfish within 1–6 h 
( Jiravanichpaisal et al., 2009).

Cherax quadricarinatus (Von Martens, 1868) is a fast-growing 
and large-sized crayfish and has been studied intensely (Yang et 
al., 2020). It is an important commercial species and a potential 
biological model. Trx1 is an important antioxidant gene that can 
maintain redox hemostasis in individuals during the immune 
response (Lee et al., 2013). To investigate the role of CqTrx1 in 
the antiviral immunity of C. quadricarinatus, we first cloned the 
thioredoxin gene CqTrx1in C. quadricarinatus, and studied its 
expression under V. alginolyticus, A. hydrophila or V. parahemo-
lyticus stress.

M AT E R I A L S  A N D  M ET H O D S

Experimental materials
Tissues from 30 individuals of C. quadricarinatus (36  ±  4  g, 
12 ± 1.2 cm), including hepatopancreas, muscle, gills, intestine, 
stomach, testis, abdominal nerve, ovary, heart, eye, and hemo-
cytes were quickly frozen in liquid nitrogen after the crayfish 
were fully anaesthetized by placing them in an ice bath, and then 
conserved at −80 °C.

For stimulation by bacteria, 160 crayfish (7.5  ±  0.5  cm, 
10.5  ±  1.5  g) were acclimated at 23.0 °C for three days, and 
then divided into four groups. Each individual was injected with 

0.1 ml of V. alginolyticus, 0.1 ml of V. parahemolyticus, 0.1 ml of 
A. hydrophila in PBS, or 0.1 ml of PBS alone. Crayfish were sam-
pled as soon as they died, and gills of three living crayfish in each 
group were randomly harvested at 3, 6, 9,12, 24, and 48 h after 
administration for RNA extraction.

Molecular cloning of the thioredoxin genes
One pair of CqTrx1-specific amplification primers was designed 
based on the transcripts in C. quadricarinatus using single-mole-
cule long-read sequencing (Xu et al., 2021) by Oligo 6.0 software  
(Table 1). PCR amplification was performed according to the 
experimental steps established in our laboratory as described by Lu 
et al. (2021), and the sequences were analyzed by using DNAStar 
7.1 after sequencing by Sangon Biotech (Shanghai, China).

Bioinformatics analysis
Bioinformatics descriptions were performed as described by 
Wang et al. (2020). NCBI BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) was used in the analysis similar to that of 
thioredoxin with other CDSs in the nucleotide collection 
database by the megablast program. The amino acid sequence, 
protein functional sites, and open-reading frame were ana-
lyzed using Expasy (http://www.expasy.org) and NCBI 
(https://www.ncbi.nlm.nih.gov/orffinder/). The signal pep-
tides were predicted online using SingalP-5.0 (https://ser-
vices.healthtech.dtu.dk/service.php?SignalP-5.0). Sequence 
alignment was analyzed by DNAMAN software (https://
www.lynnon.com/). Phylogenetic analysis using bootstrap 
resampling with the maximum likelihood method was ana-
lyzed by MEGA10 (http://www.megasoftware.net/) (with 
1,000 pseudoreplicates) and TBtools v1.098661software 
(Chen et al., 2020).

Tissue distribution of CqTrx1
qRT-PCR was performed in a CFX96TM Real-Time System 
(Bio-Rad, Hercules, CA, USA) as described by Lu et al. (2021). 
All qRT-PCR reactions were completed in triplicate and the 
comparative CT method was used as previously described (Lu et 
al., 2021). The relative expression level of CqTrx1 was analyzed 
using the formula 2−ΔΔCT by normalization to the control Ef1a 
gene. Duncan’s method was used to statistically analyze and per-
form comparisons of the treatment’s groups with SPSS software 
(https://www.ibm.com/products/spss-statistics).

Table 1. Primer sequences.

Primers Sequence (5’–3’)
length(bp) 

Amplification Tm  

TrxF1 CTCGTCTCTGCTACCTTCATA 571 59 CDS cloning

TrxR1 TAACAGTGCCATCAAGTACA

TrxdlF1 AGATTGAGTCCTTCTCTGGCG 93 61 qRT-PCR

TrxdlR1 GAGCATTTCTTGGAGGTAGCA

EfdlF1 TCAAACTTCCAGAGGGCAATA 109 60 qRT-PCR

EfdlR1 AGTCAACAGAGATGGGCAAAG
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R E SU LTS

Cloning of the CqTrx1 genes
The coding sequence (CDS) obtained by RT-PCR of the CqTrx1 
gene of C. quadricarinatus was 571 bp (Fig. 1A), which was con-
sistent with the expected results. The sequence of CqTrx1 had 
been submitted to NCBI (GenBank OM243912).

Sequence features of the CqTrx1 genes
The ORF Finder software in the NCBI website analysis indi-
cated that the ORF length of the CqTrx1 genes was 318 bp, 
encoding 105 amino acids (Fig. 2A). The CqTrx1 protein 
domain prediction revealed that it contains a thioredoxin 
family active site (residues 24–42), a cAMP- and cGMP-de-
pendent protein kinase phosphorylation site (13GRI16), a 
casein kinase II phosphorylation site (6GRI19), and other 
regions (Fig. 2B).

Figure 1. Cloning of the CqTrx1 genes of C. quadricarinatus: PCR 
product of CqTrx1 (A). The plasmid of PCR product cloned into the 
TA cloning vector (B).

Figure 2. Sequences analysis of the CqTrx1 gene: nucleotide and amino acid sequences (A). TrxF1 and TrxR1 primers are underlined, TrxdlF1 
and TrxdlR1 are boxed. Motif sites of the CqTrx1 gene (B).
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The overall similarity of CqTrx1 in C. quadricarinatus 
was 75.24%, 67.62% and 66.67% identity with that from 
Macrobrachium rosenbergii, Penaeus monodon Fabricius, 1798, 
and Fenneropenaeus chinensis, respectively. The phylogenetic tree 
of Trx based on the amino acid sequences showed that CqTrx1 
was located in independent branches (Fig. 3).

The molecular formula of this protein is C527H825N133O163S10 
and it contains 105 amino acids. Among the 105 amino acids, 
Glu, Lys, and Val had the highest content (10.5% each), followed 
by Asp (9.5%), and Tyr (1.0%); the isoelectric point of Cqtrx1 
was 4.77. There was no signal peptide in the CqTrx1 N-terminus 
and it was located in the cytoplasm, containing five α-helices, five 
β-folds, five T-turns, and two irregular coils (Fig.4). Tissue dis-
tribution of the CqTrx1 gene and its expression

Melting curve analysis of qRT-PCR indicated that the prim-
ers of CqTrx1 were monomers (Fig. 5A), and the results showed 
that CqTrx1 transcription was widely found in the heart, gill, 
hepatopancreas, gonad, intestine, eyestalk, muscle, and nerve tis-
sues (Fig. 5B), in the decreasing order of intestine > gill > heart> 

nerve > muscle > eyestalk > gonad > hepatopancreas (Fig. 5C), 
and the maximum difference between their expression levels in 
tissue can be up to seven times.

The transcription pattern of CqTrx1 mRNA in the gills 
after bacterial exposure is shown in Figure 6. After V. algino-
lyticus exposure, the expression of the CqTrx1 gene in the gill 
at 3, 6, and 9 h was significantly higher than that in the con-
trol group, and presented a downward trend. This expression 
value of CqTrx1 was 3.1 times higher at 3  h and 0.37 times 
lower at 48 h than that in the control group (Fig. 6A)

After exposure to V. parahaemolyticus, the expression first 
increased and then decreased compared with that of the control 
group, reaching the maximum value at 9 h, which was approxi-
mately four times that of the control group and 0.03 times lower 
at 24 h than that in the control group (Fig. 6B).

The expression level of the CqTrx1 gene under A. hydrophila 
stress was greater than that in the control group except at 6 h, 
and reached the highest value at 24 h, which was seven times the 
control expression value (Fig. 6C).

Figure 3. Phylogenetic analysis of the CqTrx1 gene.

Figure 4. Secondary structures of the CqTrx1 gene of Cherax quadricarinatus.
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D I S C U S S I O N
The Trx system plays essential roles in maintaining cellular redox 
homeostasis and antioxidant defenses (Lu & Holmgren, 2014). 
It had been shown that the reactive oxygen species/reactive 
nitrogen species (ROS/RNS) play an important function in 
modifying thiols in proteins. The system can reversibly regulate 
thiol modifications, which regulate redox signaling involved in 
the central nervous system (Ren et al., 2017). Thioredoxin is a 
redox protein with a broad role in intracellular signaling and reg-
ulation of redox homeostasis. This reducing protein can reverse 
the oxidative modification of intracellular protein cysteines 
(Zhou et al., 2019b).

We undertook cloning and expression of the thioredoxin1 
gene in C. quadricarinatus, and the results showed that it was 
75.24%, 74.29%, and 66.67% similar to the Trx genes of M. 
rosenbergii, Eriocheir sinensis (Mu et al., 2009), and P. chinensis 

(Ren et al., 2010), respectively. $Multiple sequence comparison 
revealed the important CGPC-active site motif (Booze et al., 
2016). CqTrx1 contains five α-helices, two β-folds, two T-turns, 
and two random curls; however, compared with the predicted 
secondary structure of rhodopsin Larimichthys crocea Trx, our 
CqTrx1 lacked 2 β-folds at the N-terminus (Chen et al., 2018). 
Since CqTrx1 also contains two β-folds, two T-turns and other 
active sites, the lack of a β-fold at the N-terminus may not directly 
affect the antioxidant activity. Meanwhile, no signal peptide was 
found within CqTrx1, suggesting that the CqTrx1 protein might 
be a cytosolic form.

CqTrx1 transcripts were expressed in all examined tissues, 
similar to other reports (Chen et al., 2018; Cheng et al., 2016). 
It was demonstrated that the expression of Trx1 was not all the 
same among species; for example in the fish golden pompano 
Trachinotus ovatusin (Linneaus, 1758), Trx1 expression was the 

Figure 5. The expression level of the CqTrx1 gene in different tissues of C. quadricarinatus. Melt curve analysis of the CqTrx1 gene (A). 
Detection of PCR products using agarose gel electrophoresis (B). Relative expression level of CqTrx1 in different tissues (C). The same letters 
above the bars indicate no statistically significant differences, and different letters above the bars indicate statistically significant differences 
between the samples (one-way ANOVA followed by a post hoc Tukey test, P < 0.05).
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Figure 6. The expression pattern of the CqTrx1 gene in the gills of C. quadricarinatus after bacterial challenge. Relative expression of CqTrxq 
after V. alginolyticus challenge (A), relative expression of CqTrxq after V. parahaemolyticus challenge (B), and relative expression of CqTrxq after 
A. hydrophila challenge (C). The same letters above the bars indicate no statistically significant differences, and different letters above the bars 
indicate statistically significant differences between the samples (one-way ANOVA followed by a post hoc Tukey test, P < 0.05).
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highest in the stomach, followed by gills and fins (Pourbasheer 
et al., 2015;Wang et al., 2015), but in the big-belly seahorse 
Hippocampus abdominalis Lesson, 1827, the highest expression 
was observed in muscle tissue. Herein, CqTrx1 gene expression 
in C. quadricarinatus was highest in the intestine followed by 
gills, heart, and hepatopancreas.

Shrimps farmed in pond water have always been affected by 
infectious diseases, mainly of bacterial and viral etiology (Flegel, 
2012). After V. parahaemolyticus infection, Trx1 expression was 
downregulated significantly at 12 and 48  h post-infection in the 
liver and kidney of the fish Larimichthys crocea (Richardson, 1846) 
(Chen et al., 2018), whereas Chlamys nobilis Trx transcript levels 
were found to be significantly upregulated after V. parahaemolyt-
icus infection, significantly higher in the golden scallops than that 
in the brown scallop Chlamys nobilis (Reeve, 1852) (Zhang et al., 
2018). The knockdown of Trx1 in the Marsupenaeus japonicus 
(Spence Bate, 1888), however, significantly reduced mortality and 
virus-copy number (Guo et al., 2019). We found that the expres-
sion of the CqTrx gene in the gills of C. quadricarinatus was signif-
icant within 3 h after bacterial exposure and reached the highest 
level within 9 h in the V. algolyticus and V. parahaemolyticus groups, 
which were three and five times higher than that of the control, 
respectively. In the gills of individuals were exposed to A. hydroph-
ila, the expression of the CqTrx gene was significantly higher at 24 h 
(P < 0.05) and seven-fold higher than that of the control. Therefore, 
A. hydrophila remained in Cherax quadricarinatus longer and was 
more virulent than in the two Vibrio species. These results suggest 
that CqTrx has a major antioxidant function and plays an important 
role in regulating cellular redox homeostasis in vivo in this crayfish.
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